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Abstract

Background/Objectives: Intrauterine insemination (IUI) is a common first-line approach
in the treatment of numerous infertile couples, especially in cases of unexplained infertility.
Its relatively low success rate, however, could benefit from the development of Al-based
support tools to predict its outcome, thus helping the clinical management of patients un-
dergoing IUI cycles. Our objective was to develop a robust and accurate machine learning
model that predicts pregnancy outcomes following IUL Methods: A retrospective, observa-
tional, and single-center study was conducted. In total, 3535 couples (aged 18-43 years)
that underwent IUI between January 2011 and December 2015 were recruited. Twenty-one
clinical and laboratory parameters of 9501 IUI cycles were used to train different machine
learning algorithms. Accuracy of pregnancy outcome was evaluated by an area under the
curve (AUC) analysis. Results: The linear SVM outperformed AdaBoost, Kernel SVM, Ran-
dom Forest, Extreme Forest, Bagging, and Voting classifiers. Pre-wash sperm concentration,
the ovarian stimulation protocol, cycle length, and maternal age were strong predictors
of a positive pregnancy test following IUI (AUC = 0.78). Paternal age was found to be
the worst predictor. Conclusions: Our Linear SVM model predicts a positive pregnancy
outcome following IUI. Although this model shows value for the clinical management of
infertile patients and informed decision-making by the patients, further validation using
independent datasets is required prior to clinical implementation.

Keywords: reproductive medicine; predictive model; intrauterine insemination; artificial
intelligence; machine learning

1. Introduction

Intrauterine insemination (IUI) is a common first-line approach in cases of unexplained
infertility. This technique has a low incidence of complications and broadly addresses
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several conditions, including mild endometriosis, ovulation dysfunctions, and moderate
male infertility, in addition to giving women without a male partner the opportunity to
conceive. One of the notable advantages of IUI is the relatively low cost compared with
other assisted reproductive technologies (ARTs), allowing couples to afford multiple cycles
and increase their chances of success. The pregnancy rate per IUI cycle varies, ranging from
7% when oral stimulation agents are utilized to 12% when a recombinant follicle-stimulating
hormone (FSH) is employed [1]. Several studies have focused on identifying prognostic
factors that predict the success of IUI treatment in an effort to provide tools to manage
patients’ expectations and orient them on personalized care pathways. Among these factors,
the most relevant are total motile sperm count [2,3], female age [4], duration of infertility [5],
and type of infertility [6]. Unfortunately, most models have been developed using small
datasets and making use of a limited number of variables [7-9]. Small datasets specifically
cause model overfitting, with little reproducibility when used with real-world data; this is
especially problematic in ART due to the significant variations among patients, making it
crucial to accurately predict outcomes for each individual. Additionally, using only a few
parameters limits the model’s ability to understand the many aspects of reproductive health.
Important factors like genetics, lifestyle, and environment might be missed, reducing the
accuracy and usefulness of these models [10-13].

In recent years, artificial intelligence (AI) has shown great potential in helping with
healthcare tasks like classifying medical images and predicting outcomes. Machine learning
(ML) has been extensively used in ART to simplify tasks such as embryo quality predic-
tion [14], prediction of the best FSH starting dose [15], or oocyte quality assessments [16].
However, human (in)fertility is a complex interplay of numerous biological, environmental,
and psychosocial factors. Due to this, simpler predictive models have often struggled to
account for this complexity. An area where ML can significantly contribute to the improve-
ment in care is the prediction of IUI success. Although the individual machine learning
techniques employed are well-established, their application to a comprehensive, large-scale
dataset of well-characterized IUI cycles, coupled with a detailed feature importance analy-
sis, can provide a robust and clinically actionable predictive model for pregnancy outcomes,
addressing an unmet need in reproductive medicine.

In this study, we leveraged ML models to enhance the reliability and applicability of
our predictive model. We utilized a larger dataset, enriched with a wide range of clinical
factors. We assessed various models to determine which offered the highest predictive
accuracy, and we also ranked patient features by their impact on model performance to
enhance understanding of model mechanics. This analysis helped us to identify critical
factors that improve predictions of pregnancy outcomes following IUL We refer to our
approach as “Smart IUI”, aimed at assisting clinicians in identifying couples who are most
likely to benefit from IUI treatment.

2. Materials and Methods
2.1. Ethical Approval

Written informed consent was provided by all participants.

2.2. Study Design

This retrospective observational study analyzed data from 3535 couples aged 18-43
who underwent IUI between January 2011 and December 2015 at a single university-
affiliated fertility center in Montreal, Canada. The dataset created for this study includes
de-identified patient characteristics and clinical outcomes from 9501 IUI cycles. Twenty-one
features were extracted for each cycle, including the male and female patient age, sperm
quality parameters, number of previous IUI cycles, type of ovarian stimulation protocol,
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and number of days between menses and insemination or pregnancy (see Supplementary
Table S1 for details). The database was pre-processed for consistency and clinical accuracy,
and was then split into training, validation, and test sets. Hyperparameters were optimized
using a stratified four-fold cross-validation to determine which models performed better,
ultimately ranking the features used for the model.

2.3. Eligibility Criteria

Data were included in the study if the couple underwent at least one IUI cycle for any
of the following indications: mild male factor infertility, mild endometriosis, ovulatory
dysfunction, and unexplained infertility.

2.4. Ovarian Stimulation Protocols

The ovarian stimulation protocols involved oral agents, injectable gonadotropins,
combination therapy, or natural cycles. Oral treatments, including clomiphene citrate
(Clomid®, Sanofi-Aventis Canada, Laval, QC, Canada; 50-200 mg/day), letrozole (Femara®,
Novartis Pharma Canada, Dorval, QC ,Canada; 2.5-5 mg/day), or tamoxifen (Nolvadex®,
AstraZeneca Canada Inc., Mississauga, ON, Canada ; 20-60 mg/day), were administered
for five days, starting from the third day of the menstrual cycle. A recombinant human
follicle-stimulating hormone alone (Gonal F®, EMD Serono Canada, Mississauga, ON,
Canada; Puregon®, Merck Canada Inc., Kirkland, QC, Canada), or in combination with a
luteinizing hormone (Menopur® or Repronex®, Ferring Canada, Toronto, ON, Canada),
was administered at a dose ranging from 37.5 to 300 IU every one or two days until the
trigger of ovulation, starting from the second or third day of the menstrual cycle. Protocols
combining clomiphene citrate or letrozole with gonadotropins were employed in fewer
cases. Patients undergoing natural cycles received no pharmacologic intervention.

All cycles were monitored using transvaginal ultrasound to assess the number and
size of ovarian follicles as well as the endometrial thickness. When at least one antral follicle
reached an average diameter of 18 mm, a subcutaneous injection of 250 ug of recombinant
human chorionic gonadotropin (Ovidre1®, EMD Serono Canada, Mississauga, ON, Canada)
was administered to trigger ovulation.

2.5. Sperm Analysis and Preparation

Fresh sperm samples were collected by masturbation following two to three days
of sexual abstinence. Specimens were liquefied at 37 °C for 30 min prior to process-
ing. Spermatozoa concentration, motility, and progression were microscopically analyzed
(100x magnification) using 10 pL of semen in a Makler Chamber.

Sperm was prepared for IUI using density gradient centrifugation. A colloidal gradient
consisting of 1 mL of 80% medium under 1 mL of 40% medium (Gynotec Sperm filter,
Fertitech Canda Inc., Saint-Laurent, QC, Canada) was layered with a maximum of 4 mL
of the sperm. After initial centrifugation at 400 g for 20 min, motile spermatozoa were
transferred into 5 mL SpermWash® (Gynotec Sperm wash, Fertitech Canada Inc., Saint-
Laurent, QC, Canada) using a sterile Pasteur pipette for a second centrifugation at 100x g
for 10 min. The resulting pellet was re-suspended in 0.5 mL SpermWash® (Gynotec Sperm
wash, Fertitech Canada Inc., Saint-Laurent, QC, Canada) for a post-wash analysis of sperm
quality parameters and to calculate the number of motile spermatozoa inseminated (NMSI).

2.6. Intrauterine Insemination and Confirmation of Pregnancy

Intrauterine insemination (IUI) was performed 35-39 h after the ovulation trigger, us-
ing an insemination catheter (Mini space®, CCD, CooperSurgical, Toronto, ON, Canada). To
support the luteal phase and promote implantation following IUI, patients were instructed
to take 200 mg micronized progesterone (Prometrium®, Merck Canada Inc., Kirkland, QC,
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Canada) daily for 15 days following the procedure until 8 weeks of pregnancy. Patients
under natural cycles or oral agents alone did not receive a supplementation regimen. Con-
firmation of pregnancy occurred two weeks post IUI through a patient-reported urine
pregnancy test. Subsequently, an ultrasound was conducted at 7 weeks to validate the
clinical pregnancy, which was considered to be the main outcome of the model.

2.7. Data Pre-Processing and Feature Normalization

To ensure the dataset’s consistency and suitability for analysis, we excluded cycles
with data missing from three or more features. If only one or two features were missing,
the feature’s median or mode was used to replace the missing value, as proposed by some
authors [15]. Each cycle was associated with a label indicating whether the cycle resulted
in clinical pregnancy, serving as the target variable for the predictive model (Figure 1).

386 excluded
(3 or > missing
values)
9501 IUl cycles
450 cycles (with 1 missing value) 4.7%

1 114 cycles (with 2 missing values) 1.2%

SPLIT DATA

70% 30%
6644 cycles 2856 cycles
2428 patients 1041 patients
I |
l | Determining
[ | hyperparameters
I |

4 fold cross validation

!

AdaBoost | Linear | Kernel | Random | Extreme | Bagging | Voting
SVM [ SVM | Forest Forest | Classifier | Classifier

Figure 1. Overview of the data processing and machine learning pipeline used for predicting
intrauterine insemination (IUI) success. The final dataset of 9501 cycles was split into a training set
(70%,; 6644 cycles from 2428 patients) and a test set (30%; 2856 cycles from 1041 patients). Four-fold
cross-validation was used within the training set for hyperparameter tuning. Multiple models were
evaluated based on the area under the curve (AUC), including AdaBoost, Linear and Kernel Support
Vector Machine (SVM), Random Forest, Extreme Forest, Bagging, and Voting classifiers.

Next, we tested six normalization methods (i.e., scale, normalization, robust scale,
min-max, standard scaler, and PowerTransformer) to develop our ML model. The Pow-
erTransformer yielded superior results by effectively transforming the data, aligning its
distribution more closely with a Gaussian distribution, and was selected for further analy-
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sis [17]. The machine learning model was implemented in Python 3.11 using Scikit-learn
for normalization [18].

The study dataset had four discrete, sixteen continuous, and one categorical variable/s
(Supplementary Table S1). As the majority of machine learning algorithms are designed to
handle only continuous or discrete variables, the categorical variables underwent one-hot
encoding, transforming them into discrete variables. This approach created binary values
for each category, providing input information for our model [19].

2.8. ML Model Training

The dataset was split into a training set (70% of the dataset; 6644 cycles from 2428 pa-
tients) and a testing set (30% of the dataset; 2856 cycles from 1041 patients) (Figure 1). Given
that some couples underwent several IUI cycles, a stratified four-fold cross-validation was
employed to avoid the overrepresentation of cycles from the same couple in each set (train-
ing or test). This approach balanced the data into four unique subsets of the same size. To
optimize the models” performance and improve robustness, we trained and validated each
model on various combinations of preliminary hyperparameters with a Random Search [20].
For each combination, we used one of the datasets for testing and the remaining three for
training. Finally, the average performance of the four models was recorded.

2.9. ML Model Selection

The performance of seven ML classification algorithms, including AdaBoost [21],
Linear SVM [22], Kernel SVM [23], Random Forest [24], Extreme Forest [25], and Bag-
ging [26] and Voting classifiers [27] was evaluated using the training set and four-fold
cross-validation. These models were compared using the Scikit-learn library [18] to identify
the model with the best performance. Model performance was quantified regarding the
area under the curve (AUC) and ranked according to the model’s accuracy in predicting
pregnancy following IUL

2.10. Feature Ranking

Data patterns identified by predictive ML classifiers are often difficult to interpret
as most classifiers are black boxes. However, the importance of the features used by the
classifier can be ranked using recursive feature elimination (RFE) [28]. Given a classifier
that assigns weights to features (e.g., Linear SVM), RFE selects the stronger features by
recursively considering smaller and smaller sets of features. In this case, the Linear SVM
was initially trained on all 21 features, and the weight of each feature was ranked using
the feature importance attribute of the Linear SVM. Weaker features were eliminated one
at a time until only one feature was left, and the model’s accuracy was improved. This
approach identified the four features that are sufficient to predict a positive pregnancy
outcome following IUI with maximum accuracy.

2.11. Data Availability

To ensure transparency and support reproducibility, the full-analysis scripts are avail-
able upon request. Interested researchers may obtain the code by contacting the first author
via email at: jaume.minano.masip@umontreal.ca.

3. Results
3.1. Baseline Characteristics

A total of 9501 intrauterine insemination cycles from 3535 couples aged 1843 years
were included in the final analysis. The median ages for women and men were 34 (IQR
31-37 years) and 36 years old (IQR 32—40 years), respectively. The average IUI cycle
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duration was 27 £ 8 days, and the NMSI was 41 £ 37 M. The sperm concentration
(88 =74 M/mL vs. 51 £ 38 M/mL; p < 0.01) and motility of progressive sperm (rapid and
slow) were significantly improved after processing for IUI (83 & 15% vs. 59 £ 20%; p < 0.01)
compared with the initial specimen.

Four ovarian stimulation protocols were employed prior to IUIL. Most patients received
oral agents alone (79.58%; 7561 cycles) or in combination with exogenous gonadotropins
(16.89%; 1605 cycles). Exogenous gonadotropins were employed alone in 216 cycles (2.27%),
while natural cycles were used in 119 cycles (1.25%); the use of these protocols remained
marginal regardless of how many IUIs the couple underwent. Oral agents were typically
used alone in the first three insemination cycles (>83% of cycles); however, from the fourth
cycle onwards, they were often combined with exogenous gonadotropins to boost effectivity
(Table 1). There was no significant difference between age groups; the distribution of cycles
by age group exhibited similarity, with most cycles observed in patients aged 30 to 34 years
(36.4%) (Supplementary Table S2).

Table 1. Ovarian stimulation protocols and pregnancy outcomes by history of intrauterine insemina-
tion cycle and stratified by IUI attempt. Statistical differences were found with an ANOVA followed
by Tukey’s HSD. Data are presented as the number of cycles (n) and proportion (%) of the total 9501
IUI cycles analyzed (%). IUI: intrauterine insemination.

Ovarian Stimulation Protocol

IUI Total Number : Positive
Attempt of Cycles Oral Exogenou§ Combined Natural Pregnancy
Agents Gonadotropins Therapy Cycles Test
1 3559 (37.45%) 2954 (83.00%) @ §(2)<>/ ) 469 (13.20%) 54 (15.10%) 512 (14.38%)
2 2614 (27.51%) 2236 (85.50%) 1 ;Lg(y) 296 (11.32%) 36 (1.37%) 325 (12.43%)
3 1841 (19.37%) 1576 (85.60%) 1 %(7) 217 (11.80%) 16 (0.80%) 189 (10.26%)
4 774 (8.14%) 420 (54.26%) 3 ggo/ ) 317 (40.95%) 9 (1.10%) 107 (13.82%)
5 713 (7.50%) 376 (52.73%) 3 53(7) 305 (42.80%) 4 (0.50%) 97 (13.60%)

Statistically significant differences were found between IUI 1 and IUI 2 (p = 0.001), IUI 1 and IUI 3 (p = 0.001), IUI 2 and
IUI 3 (p = 0.001), IUI 2 and TUI 4 (p = 0.046), IUI 3 and IUI 4 (p = 0.001), and IUI 3 and IUI 5 (p = 0.001). No significant
differences were observed between IUI 1 and IUI 4 (p = 0.488), IUI 1 and IUI 5 (p = 0.235), IUL 2 and TUI 5 (p = 0.163),

and IUI 4 and IUI 5 (p = 0.9).

In our cohort, 1230 (12.94%) IUI cycles resulted in a positive pregnancy test. Preg-
nancy rates declined with the first three insemination cycles (14.38%,12.43%, and 10.26%,
respectively) but stabilized from the fourth cycle onwards (13%). Statistically significant dif-
ferences were observed between different IUI attempts, as shown in Table 1. The cumulative
pregnancy rate after four IUI cycles was 31.83%.

3.2. ML Model Selection

We tested various machine learning models, such as AdaBoost, Linear SVM, Kernel
SVM, Random Forest, Extreme Forest, Bagging and Voting classifiers, on the study dataset
to predict pregnancy outcomes. The performance of each model is summarized in Table 2.
Among these models, the Linear SVM model outperformed the others, achieving the
highest score of 0.76 across the four-fold cross-validation and test sets. This score measures
how accurately a model predicts outcomes, with higher scores indicating better predictions.
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Table 2. Results of models” performance. The first column, labelled “Model”, lists the seven different
models used in the study. The second column represents the hyperparameters; each model employed
distinct parameters that were adjusted during training to enhance performance. The optimal hyper-
parameters for each model are detailed in the table. The third column denotes the time required to
compute each model. Lastly, the fourth column, labelled “AUC”, displays the accuracies obtained
using the 21 features in the first three columns (cross-validation (CV), training, and test), while “Top
4” indicates accuracies using recursive feature elimination (RFE). Note: The top-performance model
is shown in bold. Six of the seven methods performed only marginally better than a 0.5 AUC score,
which resembles random guessing. AUC: area under the curve.

. AUC
Model Parameters '(1;11:::) 21 Features Top 4
CVv Train Test
1 AdaBoost &f;ff;gi ;0% 147 058540045 0.628+0.02 057=+003 058+ 0.05
Linear C 0.001
2 SVM Class weight 110 4.8 0.760 £ 0.045 0.790 +=0.06 0.76 =0.04 0.78 + 0.04
Kernel rbf
Kernel Gamma 0.001
3 SVM Class weight 1:10 52.1 0.584 +£ 0.057 0.676 =0.042 0.56 =0.05 0.57 & 0.05
C: 1000
N_estimators 50
Max_depth 15
Bootstrap true
4  Random  Min_samples_split 0.1 324 0597 +0044 0.689+0056 0.56+0.03 0.58 + 0.04
Forest Min_samples_leaf 0.01
Max_features none
Class_weight:
balanced_subsample
N_estimators 200
Max_depth none
Bootstrap true
5  bxtreme Min_samples_split 2 499 0590 +0.054 0.872+0045 0554004 056+ 0.06
Forest Min_samples_leaf 10 ’ ’ ’ ’ ’ ’ ’ ) )
Max_features auto
Class_weight 1.25
Oob_score true
N_estimators 400
Bacein Max_samples 0.25
6 58S Max_features 0.1 765  0576-+0.040 0.883+0.043 053+ 005 0.54 + 0.04
Classifier
Bootstrap true
Oob_score true
Voting C0.01
7 Classifier W 1:10 28.8 0.579 £0.047 0.853 £0.034 0.56 £0.05 0.57 +0.05

Although the Linear SVM model performed well on both the training data and unseen
test data, other models like the Extreme Random Forest, Bagging classifier, and Voting
classifier performed well on the training data but their performance dropped when tested
on new data.

3.3. Feature Ranking

We applied the recursive feature elimination (RFE) technique to refine our approach to
predict pregnancy outcomes. RFE helps identify the most impactful features by iteratively
removing the least important ones, thereby potentially increasing the accuracy of the
machine learning model. Table 3 illustrates the results of feature ranking in our study using
the Linear SVM model. Key features such as the pre-wash sperm concentration, type of
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ovarian stimulation received by the patient, cycle length, and maternal age were identified
as the top contributors to our predictive model (Table 3 and Table S1).

Table 3. Ranking of predictive features for intrauterine insemination (IUI) success based on their
contribution to model accuracy. Definitions of all the features are presented in Supplementary
Table S1. Recursive feature elimination (RFE) is a systematic process used for feature ranking that
hinges on a model’s predictive accuracy. The procedure starts with a model fully trained on all
available features. Using a support vector machine, the method assesses each feature’s contribution
to model performance, and the least important feature is removed. The model is then retrained on
this pruned feature set, and the cycle repeats. The importance of each feature is measured using the
mean decrease in accuracy metric. This method assesses how much the accuracy of the model drops
when the values of a feature are randomly shuffled, breaking its association with the target outcome.
The elimination process continues if further removals lead to a significant performance degradation.
The retained set of features, deemed the most critical for accurate predictions, is expected to balance
simplicity and predictive power, enabling the model to perform effectively on new, unseen data. A
(rapid progressive), B (slow progressive), C (non-progressive), and D (immotile) are combined to
provide motility scores (e.g., A + B + C) and the NMSI (number of motile sperm inseminated).

Rank Feature Accuracy
1 Pre-wash sperm concentration *
2 Ovarian stimulation f
3 Cycle length 4+
4 Maternal age *
5 Post-wash sperm A + B+ C $
6 IUI history ¥
7 Post-wash sperm C ¥
8 Post-wash sperm concentration s 4
9 Pre-wash sperm B 4
10 Post-wash sperm C ¥
11 Post-wash sperm A + B ‘
12 Pre-wash sperm A $
13 Pre-wash sperm D 4
14 Pre-wash sperm C ¥
15 NMSI 1)
16 Pre-wash sperm A + B + C 4
17 Pre-wash sperm A + B $
18 Number of days between menses and pregnancy test ¥
19 Post-wash sperm B 4
20 Post-wash sperm A $
21 Paternal age 4
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Pre-wash sperm concentration emerged as the top-ranked predictive feature, sug-
gesting that the quality of the raw semen sample plays a pivotal role in determining IUI
success. Other sperm parameters, such as post-wash sperm A + B + C motility, post-wash
concentration, and various individual motility categories (A, B, C, and D), showed lower
but still measurable contributions to prediction accuracy. However, none of these features
surpassed the influence of pre-wash concentration, which remained the only sperm-related
variable among the top four predictors retained after recursive feature elimination.

Table 2 shows the benefits of RFE. By only utilizing the top 4 features identified by
RFE rather than the entire set of 21 features, the SVM classifier reached a higher area
under the curve (AUC) score of 0.78. This approach might appear counterintuitive but it
underscores how focusing on fewer, more relevant features can boost model performance,
as opposed to using a larger number of less relevant features, which can introduce noise
and degrade performance.

The performance of all the machine learning classification algorithms was then evalu-
ated using the following two distinct feature sets: “All”, described in the previous chapter,
and “Top 4” (Supplementary Table S3). For the “All” feature set, the Linear SVM model
achieved the highest area under the curve (AUC) at 0.76 £ 0.04, accompanied by a recall
of 0.73 £ 0.01 and an F1 score of 0.76 £ 0.10. In contrast, the other models, including
AdaBoost, Kernel SVM, Random Forest, Extreme Forest, and Bagging and Voting classifiers,
exhibited AUC values ranging from 0.53 £ 0.05 to 0.57 &£ 0.03. When utilizing the “Top 4”
feature set, the Linear SVM model further improved its performance, reaching an AUC of
0.78 £ 0.04, with a recall of 0.77 £ 0.02 and an F1 score of 0.78 & 0.04. The performance of
the other models with the “Top 4” feature set remained within a similar range as the “All”
feature set, with AUC values between 0.54 &+ 0.04 and 0.58 + 0.05.

4. Discussion

Machine learning models predicting the success of IUI have been extensively inves-
tigated as understanding the factors responsible for its success and using them to build
reliable models could greatly help in clinical counselling and decision-making.

Our study demonstrated that the Linear SVM model was superior to the seven other
ML models for predicting the event of pregnancy following IUI, with an AUC of 0.78. The
extensive dataset we used, including 21 clinical features from 3535 couples that underwent
a total of 9501 IUI cycles, allowed us to obtain a robust AUC that is suitable for use
in clinical practice for both consultation and decision-making. Other studies provided
similar predictions but possess limitations compared with the present work (Supplementary
Table S4). Some studies focused on infertility diagnosis, semen parameters, and ovarian
stimulation regimens [29,30]. However, several encountered challenges due to limited
dataset sizes [31] and the limited number of features analyzed, which exacerbates issues
related to overfitting in ML models [32]. Overfitting occurs when a model demonstrates
strong predictive performance during training but struggles to perform when applied to
an independent test dataset. Models characterized by significant overfitting often exhibit a
reduced ability to generalize their findings, thus compromising their overall usefulness.

The factors with the highest predictive value reported in the literature often differ,
with a few parameters consistently showing a positive predictive value, while others, such
as sperm motility and morphology, showing conflicting results.

We found that 17 of the 21 clinical features in our database, including paternal age,
proved to be redundant and/or did not significantly contribute to the predictive model.
Feature ranking by RFE highlighted that the sperm concentration before processing, type
of ovarian stimulation protocol, cycle length, and maternal age enhanced the accuracy and
provided valuable insights into the functionality of our model. In this study, some may
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have had subpar performance because of common underlying IUI patient factors, including
mild male factor or idiopathic infertility. To overcome this issue, each feature was treated as
an independent predictor of overall pregnancy without assessing the relationships between
these features [30].

The superior performance of the Linear SVM model, particularly with the reduced
“Top 4” feature set (AUC = 0.78 % 0.04), highlights its potential as a robust predictive
tool for pregnancy outcomes following IUI This finding suggests that a small set of key
features can effectively capture the patterns influencing IUI success, aligning with the
principle of parsimony in model development, as also indicated in different studies [33].
The marginal improvement in the AUC when moving from the “All” feature set to the “Top
4” for the Linear SVM indicates that feature selection can not only simplify the model but
also enhance its predictive accuracy by reducing noise or irrelevant variables. This is a
crucial aspect for clinical applicability as models relying on fewer, yet highly predictive,
features are often more interpretable and easier to implement in real-world settings. The
comparatively lower performance of other models, such as AdaBoost and Random Forest,
highlights the suitability of the Linear SVM for this specific dataset and prediction task.

Our findings highlight the predictive importance of pre-wash sperm concentration,
which aligns with prior clinical studies highlighting total motile sperm count as a key
determinant of IUI success. The prominent role of this parameter in our model suggests
that the initial quality of the semen sample retains prognostic significance, even after
processing steps such as density gradient centrifugation. Interestingly, although several
post-wash sperm parameters were included in the feature ranking, they did not further
enhance prediction. This may reflect the effect of laboratory sperm preparation, which
reduces variability among samples. It is also worth noting that motility indices (such as A
+ B + C motility) showed a moderate ranking, suggesting that aggregate motility metrics
may better capture fertilization potential than isolated motility classes.

Although the literature extensively documents the negative effect of advanced ma-
ternal age on fertility [29] and the positive impact of a higher sperm concentration, the
impact of advanced paternal age remains controversial. One study reported no discernible
influence of paternal age on pregnancy outcomes when stratified for maternal age, despite
declines in semen volume, concentration, and motility with advancing paternal age [34].
Our findings support that sperm concentration remains a key factor in achieving pregnancy,
even with advanced paternal age.

There is an emerging interest in the influence of the follicular phase duration on
the likelihood of achieving pregnancy through IUIL The follicular phase length has been
associated with an increase in the chance of pregnancy of 6% for each additional day of
the follicular phase [35]. Our study confirms and extends these findings, indicating that a
longer follicular phase length leads to improved outcomes. This trend might be attributed
to obtaining more mature follicles before IUI Other researchers have explored the impact
of anti-Miillerian hormone (AMH) levels and antral follicle count (AFC) as potential factors.
Although a positive correlation was identified between AMH and pregnancy, no such
correlation was found for AFC [36]. Considering this discovery, future studies should
incorporate both features to assess their combined predictive value.

Importantly, in nearly 80% of IUI cycles, ovarian stimulation protocols involved oral
agents. This observation reflects the established clinical practice at our facility and was
consistent with patterns reported in other studies [37]. Throughout the five-year duration
of this study, the practice of IUI remained consistent, with no significant modifications
observed. This ensured that the prognostic factors under investigation were not affected or
influenced over time.
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Finally, effectively addressing the challenge of imbalanced data in machine learning
is crucial to prevent the model from displaying bias toward the majority class. Given the
substantial imbalance in our dataset, where only 12.9% of cycles resulted in successful
pregnancies, we evaluated various models. To address the imbalance in our dataset, we
chose the AUC as our primary evaluation metric because it effectively assesses a model’s
ability to distinguish between different outcomes, such as predicting whether a pregnancy
will be successful or not, regardless of the disproportionate sample sizes. Additionally, we
implemented RFE to systematically identify and retain only the most impactful features,
thereby enhancing the model’s predictive accuracy and robustness by focusing on the most
relevant data.

Limitations and Future Work

Our study possesses certain limitations. First, outcomes of clinical significance such
as multiple pregnancies and live birth rates were unavailable in the dataset. Additionally,
we lacked external validation, which was due to the limitations in data access because this
study was developed in a single setting. This might have introduced biases and over- or
underrepresented certain features, diminishing generalizability. Finally, we considered
21 features that were most likely to influence the observed outcome based on the known
literature. However, we could have omitted some features that would have significantly
improved the model. Looking for future directions, although this model shows value for
the clinical management of infertile patients and informed decision-making by the patients,
external validation using independent datasets is of paramount importance for a broader
clinical implementation and generalizability, and represents the most immediate step to be
undertaken, possibly by performing multi-center trials that could target the most diverse
populations (and possibly use an increased number of features) to provide the basis for the
wider implementation of such a method.

5. Conclusions

The Linear SVM model accurately predicted whether patients could achieve a clinical
pregnancy following IUI, with an AUC of 0.78 when the dataset used contained features of
the sperm concentration before processing for insemination, type of ovarian stimulation,
cycle length, and maternal age. Based on recursive feature elimination, paternal age was
irrelevant for the predictive model. Our model could become a valuable tool for clinicians
who are counselling couples facing infertility after successful external validation. Predicting
whether patients can achieve pregnancy with IUI will improve informed decision-making.
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recall, and F1 score with corresponding standard deviations based on cross-validation. Linear SVM
consistently outperformed other models across both feature sets, particularly in AUC and F1 score.
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